3.1004 \(\int \frac{\sqrt [4]{a+b x^4}}{x^2} \, dx\)

Optimal. Leaf size=73 \[ -\frac{\sqrt [4]{a+b x^4}}{x}-\frac{1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac{1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right ) \]

[Out]

-((a + b*x^4)^(1/4)/x) - (b^(1/4)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/2 + (b^(1/4)*ArcTanh[(b^(1/4)*x)/(a +
 b*x^4)^(1/4)])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0243003, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {277, 331, 298, 203, 206} \[ -\frac{\sqrt [4]{a+b x^4}}{x}-\frac{1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac{1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(1/4)/x^2,x]

[Out]

-((a + b*x^4)^(1/4)/x) - (b^(1/4)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/2 + (b^(1/4)*ArcTanh[(b^(1/4)*x)/(a +
 b*x^4)^(1/4)])/2

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt [4]{a+b x^4}}{x^2} \, dx &=-\frac{\sqrt [4]{a+b x^4}}{x}+b \int \frac{x^2}{\left (a+b x^4\right )^{3/4}} \, dx\\ &=-\frac{\sqrt [4]{a+b x^4}}{x}+b \operatorname{Subst}\left (\int \frac{x^2}{1-b x^4} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )\\ &=-\frac{\sqrt [4]{a+b x^4}}{x}+\frac{1}{2} \sqrt{b} \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )-\frac{1}{2} \sqrt{b} \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )\\ &=-\frac{\sqrt [4]{a+b x^4}}{x}-\frac{1}{2} \sqrt [4]{b} \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )+\frac{1}{2} \sqrt [4]{b} \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0083758, size = 49, normalized size = 0.67 \[ -\frac{\sqrt [4]{a+b x^4} \, _2F_1\left (-\frac{1}{4},-\frac{1}{4};\frac{3}{4};-\frac{b x^4}{a}\right )}{x \sqrt [4]{\frac{b x^4}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)^(1/4)/x^2,x]

[Out]

-(((a + b*x^4)^(1/4)*Hypergeometric2F1[-1/4, -1/4, 3/4, -((b*x^4)/a)])/(x*(1 + (b*x^4)/a)^(1/4)))

________________________________________________________________________________________

Maple [F]  time = 0.028, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{2}}\sqrt [4]{b{x}^{4}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+a)^(1/4)/x^2,x)

[Out]

int((b*x^4+a)^(1/4)/x^2,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [C]  time = 1.56155, size = 41, normalized size = 0.56 \begin{align*} \frac{\sqrt [4]{a} \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+a)**(1/4)/x**2,x)

[Out]

a**(1/4)*gamma(-1/4)*hyper((-1/4, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4))

________________________________________________________________________________________

Giac [B]  time = 1.21884, size = 281, normalized size = 3.85 \begin{align*} \frac{1}{4} \, \sqrt{2} \left (-b\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (-b\right )^{\frac{1}{4}} + \frac{2 \,{\left (b x^{4} + a\right )}^{\frac{1}{4}}}{x}\right )}}{2 \, \left (-b\right )^{\frac{1}{4}}}\right ) + \frac{1}{4} \, \sqrt{2} \left (-b\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (-b\right )^{\frac{1}{4}} - \frac{2 \,{\left (b x^{4} + a\right )}^{\frac{1}{4}}}{x}\right )}}{2 \, \left (-b\right )^{\frac{1}{4}}}\right ) + \frac{1}{8} \, \sqrt{2} \left (-b\right )^{\frac{1}{4}} \log \left (\sqrt{-b} + \frac{\sqrt{2}{\left (b x^{4} + a\right )}^{\frac{1}{4}} \left (-b\right )^{\frac{1}{4}}}{x} + \frac{\sqrt{b x^{4} + a}}{x^{2}}\right ) - \frac{1}{8} \, \sqrt{2} \left (-b\right )^{\frac{1}{4}} \log \left (\sqrt{-b} - \frac{\sqrt{2}{\left (b x^{4} + a\right )}^{\frac{1}{4}} \left (-b\right )^{\frac{1}{4}}}{x} + \frac{\sqrt{b x^{4} + a}}{x^{2}}\right ) - \frac{{\left (b x^{4} + a\right )}^{\frac{1}{4}}}{x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(1/4)/x^2,x, algorithm="giac")

[Out]

1/4*sqrt(2)*(-b)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(-b)^(1/4) + 2*(b*x^4 + a)^(1/4)/x)/(-b)^(1/4)) + 1/4*sqrt(
2)*(-b)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(-b)^(1/4) - 2*(b*x^4 + a)^(1/4)/x)/(-b)^(1/4)) + 1/8*sqrt(2)*(-b)^
(1/4)*log(sqrt(-b) + sqrt(2)*(b*x^4 + a)^(1/4)*(-b)^(1/4)/x + sqrt(b*x^4 + a)/x^2) - 1/8*sqrt(2)*(-b)^(1/4)*lo
g(sqrt(-b) - sqrt(2)*(b*x^4 + a)^(1/4)*(-b)^(1/4)/x + sqrt(b*x^4 + a)/x^2) - (b*x^4 + a)^(1/4)/x